Math III UNIT 3 OVERVIEW: Polynomial Functions

Key Standards Addressed
 Connections to Common Core/NC Essential Standards

NC.M3.N-CN. 9 Use the Fundamental Theorem of Algebra to determine the number and potential types of solutions for polynomial functions.

Where This Unit Fits
 Connections to prior and future learning

Coming into this unit, students should have a strong foundation in:
\checkmark The real number system
\checkmark Factoring quadratic expressions

Math III UNIT 3 OVERVIEW: Polynomial Functions

NC.M3.A-SSE. 1 Interpret expressions that represent a quantity in terms of its context.
a. Identify and interpret parts of a piecewise, absolute value, polynomial, exponential and rational expressions including terms, factors, coefficients, and exponents.
b. Interpret expressions composed of multiple parts by viewing one or more of their parts as a single entity to give meaning in terms of a context.

NC.M3.A-APR. 2 Understand and apply the Remainder Theorem.

NC.M3.A-APR. 3 Understand the relationship among factors of a polynomial expression, the solutions of a polynomial equation and the zeros of a polynomial function.

NC.M3.A-CED. 1 Create equations and inequalities in one variable that represent absolute value, polynomial, exponential, and rational relationships and use them to solve problems algebraically and graphically.

NC.M3.A-CED. 2 Create and graph equations in two variables to represent absolute value, polynomial, exponential and rational relationships between quantities.

NC.M3.F-BF.1a Build polynomial and exponential functions with real solution(s) given a graph, a description of a relationship, or ordered pairs (include reading these from a table).

NC.M3.F-IF. 4 Interpret key features of graphs, tables, and verbal descriptions in context to describe functions that arise in applications relating two quantities to include periodicity and discontinuities.

NC.M3.F-IF. 7 Analyze piecewise, absolute value, polynomials, exponential, rational, and trigonometric functions (sine and cosine) using different representations to show key features of the graph, by hand in simple cases and using technology for more complicated cases, including: domain and
\checkmark Solving quadratic expressions by factoring and quadratic formula
\checkmark Analyzing functions using different representations
\checkmark The relationship between zeros and factors
\checkmark Representing and solving equations graphically using technology

This unit builds to the following future skills and concepts
\checkmark Use functions (polynomial, power, rational, exponential, logarithmic, logistic, piecewise-defined, greatest integer) to model and solve problems; justify results
\checkmark For sets of data, create and use calculator-generated models of linear, polynomial, exponential, trigonometric, power, logistic, and logarithmic functions.
\checkmark Explore the limit of a function graphically, numerically, and algebraically.

Math III UNIT 3 OVERVIEW: Polynomial Functions

> range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; relative maximums and minimums; symmetries; end behavior; period; and discontinuities.

> NC.M3.F-IF. 9 Compare key features of two functions using different representations by comparing properties of two different functions, each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).

> NC.M3.F-BF.1a Build polynomial and exponential functions with real solution(s) given a graph, a description of a relationship, or ordered pairs (include reading these from a table).

> NC.M3.F-BF.1b Build a new function, in terms of a context, by combining standard function types using arithmetic operations.

> NC.M3.F-BF. 3 Extend an understanding of the effects on the graphical and tabular representations of a function when replacing $f(x)$ with $k \cdot f(x), f(x)+k$, $f(x+k)$ to include $f(k \cdot x)$ for specific values of k (both positive and negative).

> NC.M3.F-LE. 3 Compare the end behavior of functions using their rates of change over intervals of the same length to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a polynomial function.

Additional Resources

Materials to support understanding and enrichment

Polynomial Functions (Key Features)

Translations of Functions
Polynomial Long Division
Remainder Theorem and Factor Theorem

* Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact sdupree@wcpss.net.

