Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

Unit Outcomes

At the end of this unit, your student should be able to:
\checkmark Define event and sample space.
\checkmark Establish events as subsets of a sample space.
\checkmark Define union, intersection, and complement.
\checkmark Establish events as subsets of a sample space based on the union, intersection, and/or complement of other events.
$\checkmark \quad$ Create a two way table from categorical data.
\checkmark Create a tree diagram that shows the sample space resulting from a multi-event situation.
\checkmark Calculate the probability of an event.
\checkmark Apply the Addition Rule to determine the probability of the union of two events using the formula P (A or B) $=P(A)+P(B)-P(A$ and $B)$.
\checkmark Interpret the probability of unions and intersections based on the context of the given problem.
\checkmark Define and identify independent events.
\checkmark Explain and provide an example to illustrate that for two independent events, the probability of the events occurring together is the product of the probability of each event.
\checkmark Calculate the probability of an event.
\checkmark Apply the general Multiplication Rule to calculate the probability of the intersection of two events using the formula.
\checkmark Compute probabilities of compound events.
\checkmark Find the union and intersection of two or more sets using Venn diagrams and set notation.
\checkmark Create Venn diagrams to find conditional probabilities.
\checkmark Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.
\checkmark Construct and interpret two way tables.
\checkmark Calculate conditional probabilities based on two categorical variables and interpret in context.
\checkmark Determine whether two events are independent or dependent.
\checkmark Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.
\checkmark Determine if two categorical variables are independent by analyzing a two-way table of data collected on the two variables.
\checkmark Look at data and determine whether the information gathered is theoretical or experimental.
\checkmark Interpret experimental data to find the probability of an event occurring.

Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

\checkmark Create a simulation of an event with a historical probability of occurring.
\checkmark Look at data and determine whether the information gathered is theoretical or experimental.
\checkmark Interpret experimental data to find the probability of an event occurring.
\checkmark Create a simulation of an event with a historical probability of occurring.

Key Standards Addressed

Connections to Common Core/NC Essential Standards
NC.M2.S-IC.2: Use simulation to determine whether the experimental probability generated by sample data is consistent with the theoretical probability based on known information about the population.

NC.M2.S-CP.1: Describe events as subsets of the outcomes in a sample space using characteristics of the outcomes or as unions, intersections and complements of other events.

NC.M2.S-CP.3: Develop and understand independence and conditional probability.
a. Use a 2-way table to develop understanding of the conditional probability of A given $B($ written $P(A \mid B)$) as the likelihood that A will occur given that B has occurred. That is, $P(A \mid B)$ is the fraction of event B 's outcomes that also belong to event A.
b. Understand that event A is independent from event B if the probability of event A does not change in response to the occurrence of event B. That is $P(A \mid B)=P(A)$.

NC.M2.S-CP.4: Represent data on two categorical variables by constructing a two-way frequency table of data. Interpret the two-way table as a sample space to calculate conditional, joint and marginal probabilities. Use the table to decide if events are independent.

Where This Unit Fits
 Connections to prior and future learning

Coming into this unit, students should have a strong foundation in:

- Basic probability: probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
- Approximating the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency
- Developing probability models and using them to find probabilities of events.
- Finding probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

This unit builds to the following future skills and concepts:

Students will use the concepts in this unit as they progress through the curriculum to upper level courses in probability and statistics. Probability is the basis upon which statistical inference in built;

Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

NC.M2.S-CP.5: Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.

NC.M2.S-CP.6: Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in context.

NC.M2.S-CP.7: Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in context.

NC.M2.S-CP.8: Apply the general Multiplication Rule $P(A$ and $B)=P(A) P(B \mid A)$ $=P(B) P(A \mid B)$, and interpret the answer in context. Include the case where A and B are independent: $P(A$ and $B)=P(A) P(B)$.
statistical inference is the process of making conclusions after analysis of data.

Additional Resources

Materials to support understanding and enrichment

Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

Glossary				
Sample space	A sample space is the set of all possible outcomes of an event.			
element	An element is a member of a set. In the set $A=\{1,2,3,4,5,6\}$, there are 6 elements in the set.			
union	A union of two sets consists of all of the members in either set. The union can be written as (A or B) or $(A \cup B)$.			
intersection	An intersection of two sets consists of only the members in both sets. The intersection can be written as $(A$ and B) or as $(A \cap B)$			
complement	The complement of a set consists of all of the members not in the set. The complement of A can be expressed as A^{\prime} or A^{c}.			Click to return to
two-way table	A two way table is a method of displaying categorical data that is broken up two ways. For example:			
		Male	Female	
	$9^{\text {th }}$ grade	15	16	
	$10^{\text {th }}$ grade	25	23	
tree diagram	A tree diagram is anoth can be used to help de	way to ine	a scenario sample sp Head, Head Head, Tail Tail, Head Tail, Tail	Key Vocabulary List

Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

Probability	The probability of an event occurring is the number of successes divided by the total number of possible outcomes. The probability of an event occurring is between 0 and 1 inclusive. A probability of zero means the event will not occur. A probability of one means the event will definitely occur.
Outcomes	The possible outcomes of an event are the sample space - for example, the outcomes of rolling 1 die are $\{1,2,3,4,5,6\}$
Mutually exclusive	Two events are mutually exclusive if they cannot happen at the same time. For example, when rolling a die, rolling a 5 and rolling an even number are mutually exclusive. These events can also be called disjoint.
Mutually inclusive	Two events are mutually inclusive if they can happen at the same time. For example, when rolling a die, rolling a 5 and rolling an prime number are mutually inclusive, since 5 is a prime number.
Addition Rule	The Addition Rule is used to find the probability of events. If the events area mutually inclusive, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$. The "overlap" is subtracted because it is actually counted twice - in both A and B. Mutually exclusive events have no events in common and therefore, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
Compound event	A compound event is made up of two or more different events. For example, picking two jellybeans from a bag and selecting a red one and then a green one is a compound event. The probabilities are determined based on whether the first item is replaced or not prior to selecting the second item.

Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

$\left.\begin{array}{|l|l|}\hline \text { Multiplication } & \text { The multiplication rule is used for compound events. } P(A \text { and } B)=P(A) \cdot P(B) . \\ \text { Rule }\end{array} \quad \begin{array}{l}\text { When finding the probability of compound events, replacement means putting the first item } \\ \text { back in the mix. For example, when selecting two cards from a standard deck, if we pick with } \\ \text { replacement, the first card is put back into the deck before picking the second card. If we } \\ \text { select without replacement, the first card is not put back into the deck before selecting the } \\ \text { second card. }\end{array}\right\}$

High School Programs

Math 2 UNIT 6 OVERVIEW: Probability Parent Guide

	experimental will approach the theoretical after a large number of trials (Law of Large Numbers) Different simulations will give different, although similar results and simulations can be generated in different ways, with different manipulatives.	

