Math 2 UNIT 5 OVERVIEW: Trigonometry Parent Guide

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
Unit Skills Define trigonometric ratios and solve problems involving right triangles \checkmark Identify the hypotenuse of a right triangle. \checkmark Identify sides opposite and adjacent to a given acute angle in a right triangle. \checkmark Write sine, cosine and tangent ratios when given a right triangle. $\checkmark \quad$ Evaluate sine, cosine and tangent expressions. \checkmark Explain the relationship between the sine and cosine of complementary angles. \checkmark Find unknown sides and angles in right triangles using trigonometric ratios and the Pythagorean Theorem. \checkmark Solve right triangles in applied problems. Define special right triangle relationships and solve problems involving right triangles \checkmark Identify the hypotenuse of a right triangle. \checkmark Identify sides opposite and adjacent to a given acute angle in a right triangle. \checkmark Develop the relationship between the sides of a 30-60-90 right triangle. \checkmark Develop the relationship between the sides of a 45-45-90 right triangle. \checkmark Find unknown sides and angles in right triangles using special right triangles and the Pythagorean Theorem. \checkmark Solve right triangles in applied problems.	\checkmark Sine ratio \checkmark Cosine ratio \checkmark Tangent ratio \checkmark Pythagorean Theorem \checkmark Right Triangle \checkmark Angle of Elevation \checkmark Angle of Depression \checkmark 30-60-90 Special Right Triangle \checkmark 45-45-90 Special Right Triangle
Key Standards Addressed Connections to Common Core/NC Essential Standards	Where This Unit Fits Connections to prior and future learning
- NC.M2.A-SSE.1a Identify and interpret parts of a quadratic, square root, inverse variation, or right triangle trigonometric expression, including terms, factors, coefficients, radicands, and exponents	Coming into this unit, students should have a strong foundation in: Finding the area of right triangles, other triangles, special quadrilaterals, and polygons by

- NC.M2.A-CED. 1 Create equations and inequalities in one variable that represent quadratic, square root, inverse variation, and right triangle trigonometric relationships and use them to solve problems
- NC.M2.G-SRT. 6 Verify experimentally that the side ratios in similar right triangles are properties of the angle measures in the triangle, due to the preservation of angle measures in similarity. Use this discovery to develop definitions of the trigonometric ratios for the acute angles.
- NC.M2.G-SRT. 8 Use trigonometric ratios and the Pythagorean Theorem to solve problems involving right triangles in terms of a context.
- NC.M2.G-SRT. 12 Develop properties of special right triangles (45-45-90 and 30-60-90) and use them to solve problems
composing into rectangles or decomposing into triangles and other shapes.
\checkmark Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems.
\checkmark Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order
\checkmark Draw (freehand, with ruler and protractor, and with technology) triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle
\checkmark Represent proportional relationships by equations.
\checkmark Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
\checkmark Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output

This unit builds to the following future skills and concepts:
\checkmark Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

Math 2 UNIT 5 OVERVIEW: Trigonometry Parent Guide

Additional Resources

\checkmark Define trigonometric ratios and solve problems involving right triangles

- Sine, cosine and Tangent - (Reference Notes and Tutorial) Basics of the three trigonometric ratios of sine, cosine, and tangent.
- Find sine value using side ratios - (Video) Learn how the ratios of certain sides of a right triangle determine the sine value of a particular angle by using properties of similar triangles; Enter the quick code LZ2518 after clicking on the link.
- Find cosine value using side ratios - (Video) Learn how the ratios of certain sides of a right triangle determine the sine value of a particular angle by using properties of similar triangles; Enter the quick code LZ2462 after clicking on the link.
- Find tangent value using side ratios - (Video) Learn how the ratios of certain sides of a right triangle determine the sine value of a particular angle by using properties of similar triangles; Enter the quick code LZ2464 after clicking on the link.
- Solve Problems Using trigonometric ratios and the Pythagorean Theorem (Video) - Learn to apply angles of elevation and depression by doing a multistep modeling problem. Enter the quick code LZ3996 after clicking on the link.
\checkmark Define special right triangle relationships and solve problems involving right triangles
- 30-60-90 triangles - (Video) Basics of the relationships between the sides of a 30-60-90 triangle and hold to solve for the missing sides of a right triangle using the relationship.
- 45-45-90 triangles - (Video) Basics of the relationships between the sides of a 45-45-90 triangle and hold to solve for the missing sides of a right triangle using the relationship.

High School Programs

Math 2 UNIT 5 OVERVIEW: Trigonometry Parent Guide

Glossary

Math 2 UNIT 5 OVERVIEW: Trigonometry Parent Guide

Angle of Elevation	The angle of elevation is created in relation to the movement of your eyes. If you are standing on the ground and look straight ahead you must raise or elevate your eyes to see something, as in this case, up in a tree. The angle x created is the angle of elevation. It is always INSIDE the triangle. B	
Cosine Ratio	The cosine ratio of an angle in a right triangle is $\frac{\text { adjacent leg to the angle }}{\text { hypotenuse }}$ For example: $\cos R=\frac{\text { leg adjacent }<R}{\text { hypotenuse }}=\frac{s}{t}$	Click to return to Key Vocabulary List
Pythagorean Theorem Right Triangle	In a right angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides. The formula is $a^{2}+b^{2}=$ c^{2} if c is the hypotenuse. A triangle with one right angle. The other two angles are acute and complementary.	
Sine Ratio	The sine ratio of an angle in a right triangle is $\frac{\text { opposite leg to the angle }}{\text { hypotenuse }}$ For example: $\sin R=\frac{\text { leg opposite }<R}{\text { hypotenuse }}=\frac{r}{t}$	$\begin{aligned} & \text { Click to return } \\ & \text { to Key } \\ & \text { Vocabulary List } \end{aligned}$

Math 2 UNIT 5 OVERVIEW: Trigonometry Parent Guide

* Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact sdupree@wcpss.net.

