

	Unit Outcomes	Key Vocabulary
	At the end of this unit, your student should be able to:	Terms to deepen the student's understanding
\checkmark	Identify the parts of a square root expression	✓ Rational expression
\checkmark	Identify the parts of an inverse variation expression	√ radical
\checkmark	Interpret a square root expression made up of multiple parts	√ radicand
\checkmark	Create equations and inequalities in one variable that represent square root and inverse variation	√ base
	relationships between quantities and use them to solve problems.	
\checkmark	Create and graph in two variables to represent square root and inverse variation relationships	v extraheous roots
	between quantities.	√ Asymptote
\checkmark	Create systems of equations including the square root and inverse variation functions to model	✓ Direct variation
	situations in context.	\checkmark inverse variation
\checkmark	Use mathematical reasoning to justify a chosen solution method for square root and inverse	\checkmark joint variation
	variation.	\checkmark constant of variation
\checkmark	Use mathematical reasoning to justify each step of the solving process for square root and inverse	✓ Iransformations
	variation.	
\checkmark	Identify the point of intersection as the solution to a system of equations.	✓ Dilation
\checkmark	Approximate solutions using graphing technology or successive approximations with a table of	√ system
	values.	
\checkmark	Interpret key features of a square root and inverse variation function in context, including	
	positive/negative slope, increasing/decreasing, intercepts, and domain/range when given the	
	function as a table, graph, and/or verbal description.	
\checkmark	Generate different representations of square root function and inverse variation functions to	
	show key features.	
\checkmark	Compare key features of two functions each with different representation.	
\checkmark	Write a function that describes an inverse relationship between two quantities given a graph, a	
	description or ordered pairs.	
\checkmark	Rewrite expressions with radicals as expressions with rational exponents and vice versa.	

\checkmark	Apply the properties of exponents to expressions with rational exponents.
\checkmark	Determine if a solution is an extraneous solution to an inverse variation or square root equation.
Unders	stand
٠	Each individual part of the square root expression has an effect on the graph of the function.
•	Each individual part of the inverse variation expression has an effect on the graph of the function.
•	The context which would require a square root or inverse variation to represent it.
٠	The relationship between the equation and transformations for square root and inverse variation.
٠	The solution to a system of equations is the point of intersection of the two functions.
•	What the solution of a square root or inverse equation represents in the context of the situation.
•	There are multiple ways to solve equations and that I must be able to justify my method using appropriate mathematical reasoning.
•	The relationship between the solution to a system of two equations and the graphical representation of that solution.
٠	The different components of a square root function and an inverse variation function and the
	effect of constants and coefficients in different parts of the function on domain/range,
	increase/decrease, max/min, symmetry and end behavior.
•	The relationship between the symbolic, graphical, numerical, and verbal description of two
	functions.
•	The context of the situation in which an inverse variation function describes the relationship
	between two variables.
٠	The position of a constant within an inverse variation and square root function has an effect on its
	graphical representation.
•	The effects of the graphical and tabular representations of a square root and inverse variation
	function f with k*f(x), f(x) + k, f(x + k) for specific values of k (both positive and negative).
•	Expressions with rational exponents can be rewritten as radical expressions.
٠	How extraneous solutions are produced.

Key Standards Addressed Where This Unit Fits	Key Standards Addressed	Where This Unit Fits
--	-------------------------	----------------------

Connections to Common Core/NC Essential Standards	Connections to prior and future learning
NC.M2.N-RN.1 Explain how expressions with rational expressions can be rewritten as radical expressions.	Coming into this unit, students should have a strong foundation in:
NC.M2.N-RN.2 Rewrite expressions with radicals and rational exponents into equivalent expressions using the properties of exponents.	NOTE : In 8th grade math students will have worked with square roots as well as direct variation. I unit 2 of Math 2 they would have also worked with simplifying square roots while solving quadratics with the quadratic formula.
 NC.M2.A-SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Identify and interpret parts of a quadratic, square root, inverse variation, or right triangle trigonometric expression, including terms, factors, coefficients, radicands, and exponents. b. Interpret quadratic and square root expressions made of multiple parts as a combination of single entities to give meaning in terms of a context. NC.M2.A-CED.1 Create equations and inequalities in one variable that represent quadratic, square root, inverse variation, and right triangle trigonometric relationships and use them to solve problems. NC.M2.A-CED.2 Create and graph equations in two variables to represent quadratic, square root and inverse variation relationships between quantities. NC.M2.A-CED.3 Create systems of linear, quadratic, square root, and inverse variation equations to model situations in context. 	 Using systems to solve an equation of any type. Interpret key features of graphs, tables, and verbal descriptions in context to describe linear and quadratic functions that arise in applications relating two quantities, including: domain and range, rate of change, symmetries, and end behavior. Analyze quadratic functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; maximums and minimums; symmetries; and end behavior.
 NC.M2.A-REI.1 Justify a chosen solution method and each step of the solving process for quadratic, square root and inverse variation equations using mathematical reasoning. NC.M2.A-REI.2 Solve and interpret one variable inverse variation and square root equations arising from a context, and explain how extraneous solutions may be produced. NC.M2.A.REI.11 Extend the understanding that the x-coordinate of the points where the 	 This unit builds to the following future skills and concepts: ✓ Continue work of rational functions with polynomials in M3 ✓ Continue the work of radicals of other indexes in M3 ✓ Continue the work on inverse functions ✓ Continue to build on graphing all functions with key features (including end behavior, increasing, decreasing, intercepts,
NC.M2.A-REI.2 Solve and interpret one variable inverse variation and square root equations arising from a context, and explain how extraneous solutions may be produced. NC.M2.A.REI.11 Extend the understanding that the x-coordinate of the points where the	 ✓ Continue the work on inverse functions ✓ Continue to build on graphing all functions with key featur (including end behavior, increasing, decreasing, intercepts)

graphs of two square root and/or inverse variation equations $y = (x)$ and $y = (x)$ intersect are the solutions of the equation $(x) = (x)$ and approximate solutions using graphing technology or successive approximations with a table of values.	max, min, transformations)
NC.M2.F-IF.4 Interpret key features of graphs, tables, and verbal descriptions in context to	
describe functions that arise in applications relating two quantities, including: domain and range, rate of change, symmetries, and end behavior.	
NC.M2.F-IF.7 Analyze quadratic, square root , and inverse variation functions by generating different representations, by hand in simple cases and using technology for more	
complicated cases, to show key features, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; maximums and minimums; symmetries; and end behavior.	
NC.M2.F-IF.9 Compare key features of two functions (linear, quadratic, square root, or inverse variation functions) each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).	
NC.M2.F-BF.1 Write a function that describes a relationship between two quantities by building quadratic functions with real solution(s) and inverse variation functions given a	
graph, a description of a relationship, or ordered pairs (include reading these from a table).	
linear, quadratic, square root , and inverse variation function f with $2 \cdot 2(2)$, $2(2) + 2$, $2(2 + 2)$ for specific values of k (both positive and negative).	

Additional Resources	
Materials to support understanding and enrichment	

Math 2 UNIT 3 OVERVIEW: Rational & Radical Functions Parent Guide

- Working with Direct, Joint, Inverse, and Combination Variations
- Direct Variation
- Inverse Variation
- Variation Equations
- <u>Simplifying Radical Expressions</u>
- Fractional Exponents
- Transforming Functions
- Graphing Radical Functions
- Graphing Radical Functions (including domain and range)
- Radicals Vocabulary Quiz
- Solve Rational Equations
- Finding the Zeros to Radical Functions
- Solving Equations with Radicals inside Radicals

* Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact sdupree@wcpss.net.