

Math <u>2</u>-# UNIT 2 OVERVIEW: Modeling with Quadratic Functions Parent Guide

Unit Outcomes	Key Vocabulary
At the end of this unit, your student should be able to:	Terms to deepen the student's understanding
✓—Determine whether an expression is a polynomial.	✓—Polynomial Expression
 Add and subtracting polynomials. 	✓ Degree of a polynomial expression or equation Formatted:
 Multiply up to three linear expressions. 	✓ Quadratic Equations
✓ Create quadratic equations in one variable and use them to solve problems.	✓ Quadratic Formula
✓ Solve quadratic equations by inspection (e.g. $x^2 = 49$).	✓ Factoring
✓ Solve guadratic equations by taking square roots (e.g. $2x^2 + 8 = 170$).	✓ Discriminant
✓ Solve guadratic equations by using the guadratic formula.	 Non-real solutions System of Equations
✓ Use the discriminant to determine the number of real solutions of a guadratic equation	System of Equations
and when a guadratic equation has non-real solutions.	\checkmark Standard form of a quadratic
✓ Solve quadratic equations by factoring and be able to justify each step.	✓ Factored form of a guadratic
✓ Choose an appropriate method to find solutions based on the initial form of the guadra	atic \checkmark x and y -intercepts
equation and construct a viable argument to justify that method.	✓ Parabola
Solve a simple system consisting of a linear equation and a guadratic equation in two	✓ Vertex
variables graphically.	✓ Extrema
Solve a simple system consisting of a linear equation and a guadratic equation in two	✓ Maximum
variables algebraically.	✓ Minimum
\checkmark -Explain why the x-coordinates of the points where the graphs of the equations $\gamma = f(x)$	★ Axis of symmetry
and $y = q(x)$ intersect are the solutions of the equation $f(x) = q(x)$.	✓ Domain
\checkmark Find the approximate solutions of the equation $f(x) = q(x)$ using technology to graph	h theRange
functions, making tables of values, or finding successive approximations. Only linear or	✓ Completing the Square
guadratic functions should be used for $f(x)$ and $g(x)$.	 <u>Quadratic Inequality</u>
✓ Represent constraints of systems of linear-guadratic equations and/or inequalities base	ed
on a modeling context.	
✓ Interpret solutions of linear-guadratic systems as viable or non-viable options in a	
modeling context.	
\checkmark Given a function verbally, algebraically, in table, or in graph form, determine whether if	tisa
quadratic function.	

Math <u>2</u># UNIT 2 OVERVIEW: <u>Modeling with</u> Quadratic Functions Parent Guide

✓	Recognize equivalent forms (e.g. standard form $ax^2 + bx + c = 0$, and factored form $y = 0$
	$a(x - r_1)(x - r_2)$ of quadratic functions.
\checkmark	Identify the coefficients and constants of a quadratic function and interpret them in a
	contextual situation.
\checkmark	Use the process of factoring to find the zeros of a quadratic function.
✓	Find the vertex of a quadratic function algebraically and using technology.
\checkmark	Find the vertex of a quadratic function by completing the square to place the function in
	vertex form.
\checkmark	Interpret, in context, the key features of the graph and table forms of a quadratic function
	that models a relationship between two quantities. Key features include: intercepts;
	intervals where the function is increasing, decreasing, positive or negative; maximum or
	minimum, and line of symmetry.
\checkmark	Construct a rough graph of a quadratic function using zeros, intercepts, the vertex and
	symmetry.
\checkmark	Sketch the graph of a quadratic function that was graphed using technology, showing the
	key features.
\checkmark	Determine the appropriate viewing window and scale using technology to reveal the key
	features of the graph of a quadratic function.
\checkmark	Relate the domain of a quadratic function to its graph and, when given a context, to the
	quantitative relationship it describes.
\checkmark	Identify the effect on the graph of a quadratic function $f(x)$ in vertex form when $f(x)$ is
	replaced with $f(x) + k$, $f(x + k)$ and $k \cdot f(x)$ for specific values of k (both positive and
	negative).
✓	Experiment with various cases of $f(x)$ when replaced with $f(x) + k$, $f(x + k)$ and $k \cdot$
	f(x) and illustrate an explanation of the effects on the graph using technology.
\checkmark	Find the value of k given the graphs of a parent quadratic function and its transformation.
≁-	Evaluate quadratic functions for inputs in their domains using function notation.
≁_	Interpret statements that use function notation in terms of a context.
\checkmark	Write a quadratic function that describes a relationship between two quantities.

Math <u>2</u># UNIT 2 OVERVIEW: Modeling with Quadratic Functions Parent Guide

Key Standards Addressed	Where This Unit Fits		
Connections to Common Core/NC Essential Standards	Connections to prior and future learning		
N-RN.3 Use the properties of rational and irrational numbers to explain why:	Coming into this unit, students should have a strong		
Ithe sum or product of two rational numbers is rational;	foundation in:		
Ithe sum of a rational number and an irrational number is irrational;	✓ adding and subtracting polynomials		
Ithe product of a nonzero rational number and an irrational number is	✓ multiplying binomials		
irrational.	✓ factoring quadratic expressions to find the zeros of the		
	corresponding quadratic function		
<u>N-CN.1</u> Know there is a complex number <i>i</i> such that $i_{i}^{"} = -1$, and every complex	 writing quadratic equations based on a context 		
number has the form <u>a + bi</u> where <u>a</u> and <u>b</u> are real	✓ interpreting the vertex of a quadratic function in context		
Numbers	✓ interpreting the constants and coefficients of a quadratic		
	function in context		
<u>A-SSE.1</u> Interpret expressions that represent a quantity in terms of its context.	✓ interpreting key features of tables and graphs of quadratic		
a. Identify and interpret parts of a quadratic including terms, factors,	functions, including intercepts and maximum/minimum		
coefficients, radicands, and exponents.	✓ graphing quadratic functions showing intercepts and		
b. Interpret quadratic made of multiple parts as a combination of single	maximum or minimum; by hand in simple cases and using		
entities to give meaning in terms of a context.	a graphing calculator (or other technology) for more		
A	complicated cases		
<u>A-SSE.3</u> Write an equivalent form of a quadratic expression by completing the			
square, where <i>a</i> is an integer of a quadratic expression,	Coming into this unit, students should have a strong		
$ax_{+}^{"} + bx_{+} + c_{a}$ to reveal the maximum or minimum value of the function the	foundation in:		
expression defines.			
	From Math 8: linear regression models/scatter plots,		
A-APR.1 Understand that polynomials form a system analogous to the integers, combining like terms, linear versus nonlinear data, using			
namely, they are closed under the operations of addition, subtraction, and	intersections to solve equations.		
multiplication; add, subtract, and multiply polynomials.			
Note: At this level, add and subtract any polynomial and extend	From Math 1:		
multiplication to as many as three linear expressions.	A APR.1 Understand that polynomials form a system		
	analogous to the integers; namely, they are closed under the		

Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), Bold
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), 12 pt
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), Bold
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), Bold
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), 12 pt
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: Not Bold
Commented [SD1]: Please summarize rather than listing

Math <u>2</u># UNIT 2 OVERVIEW: Modeling with Quadratic Functions Parent Guide

A-APR.3 Identify zeros of polynomials when suitable factorizations are available,	operations of addition, subtraction, and multiplication; add,
and use the zeros to construct a rough graph of the function defined by the	subtract, and multiply polynomials.
polynomial.	Note: At this level, limit to addition and subtraction of
Note: At this level, limit to quadratic expressions.	quadratics and multiplication of linear expressions;
	factoring and operations with polynomials have a
A-REI.1 Explain each step in solving a simple equation as following from the	much smaller focus.
equality of numbers asserted at the previous step, starting from the assumption	
that the original equation has a solution. Construct a viable argument to justify a	F-LE.3 Observe using graphs and tables that a quantity
solution method.	increasing exponentially eventually exceeds a quantity
Note: At this level, limit to factorable quadratics.	increasing linearly, quadratically, or (more generally) as a
	polynomial function.
A-REI.4 Solve quadratic equations in one variable.	Note: At this level, limit to linear, exponential, and
b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking	quadratic functions; general polynomial functions are
square roots, completing the square, the quadratic formula and	not addressed.
factoring, as appropriate to the initial form of the equation. Recognize	
when the quadratic formula gives complex solutions and write them	A-CED.2 Create equations in two or more variables to
as $a \pm bi$ for real numbers a and b .	represent relationships between quantities; graph equations
Note: At this level, limit solving quadratic equations by inspection, taking square	on coordinate axes with labels and scales.
roots, quadratic formula, and factoring when lead coefficient is one. Writing	Note: At this level, focus on quadratic. Limit to
complex solutions is not expected; however recognizing when the formula	situations that involve evaluating exponential functions
generates non-real solutions is expected.	for integer input.
A-REI.7 Solve a simple system consisting of a linear equation and a quadratic	F-BF.1 Write a function that describes a relationship between
equation in two variables algebraically and graphically. For example, find the	two quantities.
points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 y =$	a.—Determine an explicit expression, a recursive
3.	process (Using NOW-NEXT, not formal notation), or
	steps for calculation from a context.
A-REI.11 Explain why the x-coordinates of the points where the graphs of the	b. Combine standard function types using arithmetic
equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the	operations. For example, build a function that
equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology	models the temperature of a cooling body by

Math 24 UNIT 2 OVERVIEW: Modeling with Quadratic Functions Parent Guide

to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. **Note:** At this level, extend to quadratic functions.

A-CED.1 Create equations and inequalities in one variable and use them to solve problems. *Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

Note: At this level extend to quadratic<u>and inverse variation (the</u> simplest rational) functions and use common logs to solve exponential equations.

A-CED.2 Create and graph equations in two variables to represent quadratic, square root, and inverse variation relationships between quantities. Note: At this level focus only on quadratic.

A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. *For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*

Note: Extend to linear-quadrati<u>c</u>, and linear inverse variation (simplest rational) systems of equations.

F-IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Note: At this level, extend to quadratic, simple power, and inverse variation functions.

F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and

adding a constant function to a decaying exponential, and relate these functions to the model.

Note: At this level, limit to addition or subtraction of constant to linear, exponential or quadratic functions or addition of linear functions to linear or quadratic functions.

N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

A SSE.1 Interpret expressions that represent a quantity in terms of its context.

- b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1 + r)^n$ as the product of Pand a factor not depending on P.
- Note: At this level, limit to quadratic expressions.

A SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $4x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.

Math 2-# UNIT 2 OVERVIEW: Modeling with Quadratic Functions Parent Guide

sketch graphs showing key features given a verbal description of the	A-S
relationship. Key features include: domain and range, rate of change,	ехр
symmetries, and end behavior.intercepts; intervals where the function is	rep
increasing, decreasing, positive, or negative; relative maximums and minimums;	
symmetries; end behavior; and periodicity.	
F-IF-7 Analyze quadratic, square root, and inverse variation functions by	
generating different representations, by hand in simple cases	
and using technology for more complicated cases, to show key features,	F-1F
including: domain and range; intercepts; intervals where	qua
the function is increasing decreasing pacitive, or pagative; rate of change;	tor

the function is increasing, decreasing, positive, or negative; rate of change; maximums and minimums; symmetries; and end behavior.

Note: *Extend to quadratic functions only.*

F IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*

Note: At this level, extend to quadratic, right triangle trigonometry, and inverse variation functions.

F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity epresented by the expression.

 a. Factor a quadratic expression to reveal the zeros of the function it defines (factoring tied to a specific purpose, not as a separate unit).
 Note: At this level, the limit is quadratic expressions of the form ax² + bx + c.

F IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Note: At this level, focus on linear, exponential and quadratic functions; no end behavior or periodicity.

F IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of personhours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

Note: At this level, focus on linear and exponential functions.

Math <u>2</u>-# UNIT 2 OVERVIEW: <u>Modeling with</u> Quadratic Functions Parent Guide

F-IF.9 Compare key features of two functions (linear, quadratic, square root, or	F-IF.7 Graph functions expressed symbolically and show key		
inverse variation functions) each with a different representations (symbolically,	features of the graph, by hand in simple cases and using		
graphically, numerically in tables, or by verbal descriptions).	technology for more complicated cases.		
Note: At this level, completing the square is still not expected.	a. Graph linear and quadratic functions and show		
	intercepts, maxima, and minima.		
F-BF.1 Write a function that describes a relationship between two quantities by			
building quadratic functions with real solution(s) given a graph, a description of	FIF.8 Write a function defined by an expression in different		
a relationship, or ordered pairs (include reading these from a table).	but equivalent forms to reveal and explain different		
	properties of the function.		
1. Determine an explicit expression, a recursive process, or steps for	a. Use the process of factoring and completing the	-	Formatted: No bullets or numbering
calculation from a context.	square in a quadratic function to show zeros,		
Note: Continue to allow informal recursive notation through this level.	extreme values, and symmetry of the graph, and		Formatted: Indent: Left: 0"
	interpret these in terms of a context.		
1. Combine standard function types using arithmetic operations. For	Note: At this level, only factoring expressions of the	-	Formatted: No bullets or numbering
example, build a function that models the temperature of a cooling body by	form $ax^2 + bx + c$, is expected. Completing the		
adding a constant function to a decaying exponential, and relate these functions	square is not addressed at this level.		
to the model.	,		
2.	F-IF.9 Compare properties of two functions each represented		
F-BF.3 Identify the effect on the graph of replacing $f(x)$	in a different way (algebraically, graphically, numerically in		
by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both	tables, or by verbal descriptions). For example, given a graph		
positive and negative); find the value of k given the graphs. Experiment with	of one guadratic function and an algebraic expression for		
cases and illustrate an explanation of the effects on the graph using technology.	another, say which has the larger maximum.		
Include recognizing even and odd functions from their graphs and algebraic	Note: At this level, focus on linear, exponential, and		
expressions for them.	auadratic functions.		
Note : At this level, extend to guadratic functions and, $k f(x)$.	, , ,		
	This unit builds to the following future skills and concepts:		
	✓—Complex solutions		
	 Using completing the square to solve quadratic equations 		
	✓—/Using completing the square to change from standard		
	form to vertex form for a quadratic function		
	✓ Writing equations using zeros	•	Formatted: Normal, No bullets or numbering, Pattern: Clear

Math <u>2</u>-# UNIT 2 OVERVIEW: <u>Modeling with</u> Quadratic Functions Parent Guide

✓—Derivinge the quadratic formula	7	
✓ Higher degree polynomials		
✓ Relating degree to zeros and x intercepts for	•	Formatted: No bullets or numbering
<u>polynomials</u> .		
Additional Resources		
Materials to support understanding and enrichment		
✓—Teaching videos made by Wake County teachers		Commented [SD2]: Let's put the Success series videos at the
 <u>Success Series: Polynomials Part 1</u> – (Video) Basic operations including addition and subtraction polynomials. 		Commonted [SD3]: This lades a stides on factories
		Commented [SDS]: This led to a video on factoring
\circ – Success Series: Quadratic Equations Solutions by Factoring – (Video) Using the factoring to solve quadratic equations.		
 Success Series: Quadratic Equations Solutions by Quadratic Formula – (Video) Using the quadratic formula to solve quadratic 		
equations.		
 Success Series: Graphing Quadratic Equations – (Video) How to graph a quadratic using the vertex and axis of symmetry. 		
 Arithmetic Operations with Polynomials <u>Define polynomials</u> – (Video) Outlines properties of polynomials; click on the link and enter the quick code <i>LZ2438</i>. <u>Polynomials</u> – (Beference Notes and Tutorial) – Overall explanations and definitions of polynomials 		
 Adding Polynomials – (Video) Outlines adding of polynomials: click on the link and enter the quick code LZ2694. 		
 Subtracting Polynomials – (Video) Explains subtracting polynomials and common errors: click on the link and enter the quick code LZ2608. 		
 Adding and Subtracting Polynomials – (Reference Notes and Tutorial) Explanations of adding and subtracting polynomials. 		
 Multiplying Polynomials – (Video) Explains multiplying polynomials; click on the link and enter the guick code <i>LZ2619</i>. 		
 Multiplying Polynomials – (Reference Notes and Tutorial) Explanations of monomials and polynomials. 		
✓ Solving Quadratic Equations		
 <u>Solve Quadratic Equations by Inspection</u> – (Video) Explains solving quadratic equations by inspection; click on the link and enter the quick code <i>LZ743</i>. 	4	Formatted: Bulleted + Level: 1 + Aligned at: 0.25" + Indent at: 0.5"
<u>Solve Quadratic Equations by Taking Square Roots</u> – (Video) Explains solving quadratic equations by taking square roots of the equation;		Formatted: Font: 12 pt
click on the link and enter the quick code LZ744.		

Math <u>2</u># UNIT 2 OVERVIEW: <u>Modeling with</u> Quadratic Functions Parent Guide

- <u>Solve Quadratic Equations by Using the Quadratic Formula</u> (Video) Explains solving quadratic equations by using the quadratic formula; click on the link and enter the quick code *LZ748*.
- <u>Nature of Quadratic Solutions</u> (Video) Explains the solutions of a quadratic using the discriminate; click on the link and enter the quick code *LZ1288*.
- <u>Quadratic Equations</u> (Reference Notes and Tutorial) Explains basics of solving quadratic equations, the quadratic formula and discriminates.
- <u>Solving Quadratic Equations by Factoring</u> (Video) Explains solving quadratic equations by factoring; click on the link and enter the quick code *LZ745*.
- o Factoring Quadratics (Reference Notes and Tutorial) Overall steps to factoring and solving various quadratic equations.
- <u>Determine the Best Method to Solve a Quadratic Equation</u> (Video) Explains the best method to solve a quadratic equation by comparing different strategies; click on the link and enter the quick code *LZ1289*.

✓ Systems Involving Quadratic Equations

- <u>Find Solutions for Two Equations</u> (Video) Explains how to find two solutions for one linear and one quadratic equation by looking at their intersection on a graph; click the link and enter the quick code *LZ3562*.
- <u>Solutions of a Linear and Quadratic System Graphically</u> (Video) Explains how to estimate the solutions to linear and quadratic systems by graphing; click on the link and enter the quick code *LZ3595*.
- <u>Solving Systems of Linear and Quadratic Systems Graphically</u> (Reference Notes and Tutorial) Outline solving systems of linear and quadratic equations graphically.
- <u>Solutions of a Linear and Quadratic System Algebraically</u> (Video) Explains how to estimate the solutions to linear and quadratic systems algebraically; click on the link and enter the quick code *LZ3550*.
- <u>Solving Systems of Linear and Quadratic Systems Algebraically</u> (Reference Notes and Tutorial) Outline solving systems of linear and quadratic equations algebraically.
- ✓ Graphs and Tables of Quadratic Functions
 - Find Axis of Symmetry and Vertex (Video) Explains how to find the axis of symmetry and vertex of a quadratic function by solving parts of the quadratic formula; click the link and enter the quick code *LZ2322*.
 - <u>Graphing Quadratics on a Graphing Calculator</u> (Video) Graphs a quadratic function using a graphing calculator; click link and enter the quick code *LZ2415*.

Math 24 UNIT 2 OVERVIEW: Modeling with Quadratic Functions Parent Guide

- <u>Quadratic Transformations</u> (Video) Shows how to transform a quadratic function f(x) in vertex form when f(x) is replaced with f(x) + k, f(x + k) and $k \cdot f(x)$ for specific values of k (both positive and negative).
- <u>Function Transformations</u> (Reference Notes and Tutorial) Outlines the effects of on the graph of a quadratic function f(x) in vertex form when f(x) is replaced with f(x) + k, f(x + k) and $k \cdot f(x)$ for specific values of k (both positive and negative).
- How do you Graph a Quadratic Function? (Video) Graphing a quadratic function using key features.
- o <u>How do you Graph a Quadratic Function?</u> (Reference Notes) Explains graphing a quadratic function using key features.
- Interpreting Function Notation in Context (Reference Notes) Interprets function notation in the context of a cell phone with explanations.
- ✓ Teaching videos made by Wake County teachers
 - o Success Series: Polynomials Part 2 (Video) Multiplying polynomials.
 - o Success Series: Quadratic Equations Solutions by Factoring (Video) Using the factoring to solve quadratic equations.
 - Success Series: Quadratic Equations Solutions by Quadratic Formula (Video) Using the quadratic formula to solve quadratic equations.
 - o Success Series: Graphing Quadratic Equations (Video) How to graph a quadratic using the vertex and axis of symmetry.

* Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact sdupree@wcpss.net.