Math 2_H UNIT 2 OVERVIEW: AModeling with Quadratic Functions Parent Guide

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
\checkmark Determine whether an expression is a polynomial. \checkmark Add and subtracting polynomials. \checkmark Multiply up to three linear expressions. \checkmark Create quadratic equations in one variable and use them to solve problems. \checkmark Solve quadratic equations by inspection (e.g. $x^{2}=49$). \checkmark Solve quadratic equations by taking square roots (e.g. $2 x^{2}+8=170$). \checkmark Solve quadratic equations by using the quadratic formula. \checkmark Use the discriminant to determine the number of real solutions of a quadratic equation and when a quadratic equation has non-real solutions. \checkmark Solve quadratic equations by factoring and be able to justify each step. \checkmark Choose an appropriate method to find solutions based on the initial form of the quadratic equation and construct a viable argument to justify that method. \checkmark Solve a simple system consisting of a linear equation and a quadratic equation in two variables graphically. \checkmark Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$. \checkmark Find the approximate solutions of the equation $f(x)=g(x)$ using technology to graph the functions, making tables of values, or finding successive approximations. Only linear or quadratic functions should be used for $f(x)$ and $g(x)$. \checkmark Represent constraints of systems of linear-quadratic equations and/or inequalities based on a modeling context. \checkmark Interpret solutions of linear-quadratic systems as viable or non-viable options in a modeling context. \checkmark Given a function verbally, algebraically, in table, or in graph form, determine whether it is a quadratic function.	\checkmark-Polynomial Expression \checkmark Degree of a polynomial expression or equation \checkmark Quadratic Equations \checkmark Quadratic Formula \checkmark Factoring \checkmark Discriminant \checkmark Non-real Solutions \checkmark System of Equations \checkmark Constraints \checkmark Standard form of a quadratic $\checkmark \quad$ Factored form of a quadratic $\checkmark \quad x$ and y _intercepts \checkmark Parabola \checkmark Vertex \checkmark Extrema \checkmark Maximum \checkmark Minimum \checkmark Axis of symmetry \checkmark Domain \checkmark Range \checkmark Completing the Square \checkmark Quadratic Inequality

\checkmark Recognize equivalent forms (e.g. standard form $a x^{2}+b x+c=0$, and factored form $y=$ $a\left(x-r_{1}\right)\left(x-r_{2}\right)$ of quadratic functions
\checkmark Identify the coefficients and constants of a quadratic function and interpret them in a contextual situation.
\checkmark Use the process of factoring to find the zeros of a quadratic function.
\checkmark Find the vertex of a quadratic function algebraically and using technology
\checkmark Find the vertex of a quadratic function by completing the square to place the function in vertex form.
\checkmark Interpret, in context, the key features of the graph and table forms of a quadratic function that models a relationship between two quantities. Key features include: intercepts; intervals where the function is increasing, decreasing, positive or negative; maximum or minimum, and line of symmetry.
\checkmark Construct a rough graph of a quadratic function using zeros, intercepts, the vertex and symmetry.
\checkmark Sketch the graph of a quadratic function that was graphed using technology, showing the key features.
\checkmark Determine the appropriate viewing window and scale using technology to reveal the key features of the graph of a quadratic function.
\checkmark Relate the domain of a quadratic function to its graph and, when given a context, to the quantitative relationship it describes.
\checkmark Identify the effect on the graph of a quadratic function $f(x)$ in vertex form when $f(x)$ is replaced with $f(x)+k, f(x+k)$ and $k \cdot f(x)$ for specific values of k (both positive and negative).
\checkmark Experiment with various cases of $f(x)$ when replaced with $f(x)+k, f(x+k)$ and k. $f(x)$ and illustrate an explanation of the effects on the graph using technology.
\checkmark Find the value of k given the graphs of a parent quadratic function and its transformation.
\checkmark Evaluate quadratic functions for inputs in their domains using function notation.
\checkmark Interpret statements that use function notation in terms of a context
\checkmark Write a quadratic function that describes a relationship between two quantities.

Where This Unit Fits

Connections to prior and future learning
Coming into this unit, students should have a strong
foundation in:
\checkmark adding and subtracting polynomials
\checkmark multiplying binomials
\checkmark factoring quadratic expressions to find the zeros of the corresponding quadratic function
writing quadratic equations based on a context
\checkmark interpreting the vertex of a quadratic function in context
\checkmark interpreting the constants and coefficients of a quadratic function in context
\checkmark interpreting key features of tables and graphs of quadratic functions, including intercepts and maximum/minimum

\checkmark

 maximum or minimum; by hand in simple cases and using a graphing calculator (or other technology) for more complicated cases
Coming into this unit, students should have a strong

 foundation in:From Math 8: linear regression models/scatter plots, combining like terms, linear versus nonlinear data, using intersections to solve equations.

From Math 1:

A-APR. 1 Understand that polynomials form a system analogous to the integers; namely, they are closed under the

Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), Bold
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), 12 pt
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), Bold
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), Bold
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri), 12 pt
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: +Body (Calibri)
Formatted: Font: Not Bold
Commented [SD1]: Please summarize rather than listing

Math 2_H UNIT 2 OVERVIEW: AModeling-with Quadratic Functions Parent Guide

A-APR. 3 Identify zeros of polynomials when suitable factorizations are available,

 and use the zeros to construct a rough graph of the function defined by the polynomial.Note: At this level, limit to quadratic expressions.
A-REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Note: At this level, limit to factorable quadratics.

A-REI. 4 Solve quadratic equations in one variable.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.
Note: At this level, limit solving quadratic equations by inspection, taking square roots, quadratic formula, and factoring when lead coefficient is one. Writing complex solutions is not expected; however recognizing when the formula generates non-real solutions is expected.

A-REI. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2} y=$ 3.

A-REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology
operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Note: At this level, limit to addition and subtraction of quadratics and multiplication of linear expressions; factoring and operations with polynomials have a much smaller focus.

F-LE. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Note: At this level, limit to linear, exponential, and quadratic functions; general polynomial functions are not addressed.

A-CED. 2 Create-equations in two or more variables to

 represent relationships between quantities; graph equations en coordinate axes with labels and scales.Note: At this level, focus on quadratic. Limit to
situations that involve evaluating exponential functions for integer input.

F-BF. 1 Write a function that describes a relationship between two quantities.
a. Determine an explicit expression, a recursive process (Using NOW-NEXT, not formal notation), of steps for calculation from a context.
b.-Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by

Math 2_H UNIT 2 OVERVIEW: AModeling-with Quadratic Functions Parent Guide

to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, fational, absolute value, exponential, and logarithmic functions.

Note: At this level, extend to quadratic functions.

A-CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Note: At this level extend to quadratic.and inverse variation (the simplest rationall functions and use common logs to solve exponentia equations.

A-CED. 2 Create and graph equations in two variables to represent quadratic,

 square root, and inverse variation relationships between quantities.Note: At this level focus only on quadratic.

A-CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

Note: Extend to linear-quadratic ϵ, and linear-inverse variation (simplest fational) systems of equations.

F-IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a-context.
Note: At this level, extend to quadratic, simple power, and inverse variation functions.

F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and
adding a constant function to a decaying exponential, and relate these functions to the modet
Note: At this level, limit to addition or subtraction of constant to linear, exponential or quadratic functions or addition of linear functions to linear or quadratic functions.
$\mathrm{N}-\mathrm{Q} .1$ Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

A-SSE. 1 Interpret expressions that represent a quantity in terms of its context.

a. interpret parts of an expression, such as terms,

 factors, and coefficients.b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{\text {Ht }}$ as the product of P and a factor not depending on P.
Note: At this level, limit to quadratic expressions.

A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $4 x^{4}-y^{4}$ as $\left(x^{z}\right)^{z}-\left(y^{z}\right)^{z}$, thus recognizing it as a difference of squares that can be factored $\operatorname{as}\left(x^{z}-y^{z}\right)\left(x^{z}+y^{z}\right)$.

Math 2_H UNIT 2 OVERVIEW: AModeling-with Quadratic Functions Parent Guide

sketch graphs showing key features given a verbal description of the relationship. Key features include: domain and range, rate of change, symmetries, and end behavior. intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periadicity.

F-IF-7 Analyze quadratic, square root, and inverse variation functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; maximums and minimums; symmetries; and end behavior.

Note: Extend to quadratic functions only.

E-IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

Aote: At this level, extend to quadratic, right triangle trigonometry, and
inverse variation functions.

F-IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context

A-SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines (factoring tied to a specific purpose, not as a separate unit)
Note: At this level, the limit is quadratic expressions of the form $a x^{z}+b x+c$.

F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Note: At this level, focus on linear, exponential and quadratic functions; no end behavior or periodicity

F-IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of personhours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

Note: At this level, focus on linear and exponential functions.

Math 2_H UNIT 2 OVERVIEW: AModeling-with Quadratic Functions Parent Guide

1. F-IF. 9 Compare key features of two functions (linear, quadratic, square root, or inverse variation functions) each with a different representations (symbolically, graphically, numerically in tables, or by verbal descriptions).

Note: At this level, completing the square is still not expected.
F-BF. 1 Write a function that describes a relationship between two quantities by building quadratic functions with real solution(s) given a graph, a description of a relationship, or ordered pairs (include reading these from a table).

1. Determine an explicit expression, a recursive process, or steps for salculation from a-context.
Note: Continue to allow informal recursive notation through this level.
2. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
Z.

F-BF. 3 Identify the effect on the graph of replacing $f(x)$
by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Note: At this level, extend to quadratic functions and, $k f(x)$.

F-IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Note: At this level, only factoring expressions of the form $a x^{2}+b x+c$, is expected. Completing the square is not addressed at this level.

F-IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Note: At this level, focus on linear, exponential, and quadratic functions.

This unit builds to the following future skills and concepts:

\checkmark-Complex solutions

Using completing the square to solve quadratic equations
\checkmark Using completing the square to change from standard
form to vertex form for a quadratic function

Formatted: No bullets or numbering

Formatted: Indent: Left: 0"

Formatted: No bullets or numbering

Formatted: Normal, No bullets or numbering, Pattern: Clear

Math 2_H UNIT 2 OVERVIEW: AModeling with Quadratic Functions Parent Guide

Formatted: No bullets or numbering

Commented [SD2]: Let's put the Success series videos at the end of the resources since they are a little old.
Commented [SD3]: This led to a video on factoring

Formatted: Bulleted + Level: $1+$ Aligned at: 0.25 " + Indent at: $0.5^{\prime \prime}$

Formatted: Font: 12 pt

Math 2_H UNIT 2 OVERVIEW: AModeling-with Quadratic Functions Parent Guide

- Solve Quadratic Equations by Using the Quadratic Formula - (Video) Explains solving quadratic equations by using the quadratic formula; click on the link and enter the quick code LZ748
○ Nature of Quadratic Solutions - (Video) Explains the solutions of a quadratic using the discriminate; click on the link and enter the quick code LZ1288.
- Quadratic Equations - (Reference Notes and Tutorial) Explains basics of solving quadratic equations, the quadratic formula and discriminates
- Solving Quadratic Equations by Factoring - (Video) Explains solving quadratic equations by factoring; click on the link and enter the quick code LZ745.
○ Factoring Quadratics - (Reference Notes and Tutorial) Overall steps to factoring and solving various quadratic equations.
\qquad Determine the Best Method to Solve a Quadratic Equation - (Video) Explains the best method to solve a quadratic equation by comparing different strategies; click on the link and enter the quick code LZ1289
\checkmark Systems Involving Quadratic Equations
- Find Solutions for Two Equations - (Video) Explains how to find two solutions for one linear and one quadratic equation by looking at their intersection on a graph; click the link and enter the quick code LZ3562.
- Solutions of a Linear and Quadratic System Graphically - (Video) Explains how to estimate the solutions to linear and quadratic systems by graphing; click on the link and enter the quick code LZ3595.
- Solving Systems of Linear and Quadratic Systems Graphically - (Reference Notes and Tutorial) Outline solving systems of linear and quadratic equations graphically.
- Solutions of a Linear and Quadratic System Algebraically - (Video) Explains how to estimate the solutions to linear and quadratic systems algebraically; click on the link and enter the quick code LZ3550.
- Solving Systems of Linear and Quadratic Systems Algebraically - (Reference Notes and Tutorial) Outline solving systems of linear and quadratic equations algebraically.
\checkmark Graphs and Tables of Quadratic Functions
- Find Axis of Symmetry and Vertex - (Video) Explains how to find the axis of symmetry and vertex of a quadratic function by solving parts of the quadratic formula; click the link and enter the quick code LZ2322
- Graphing Quadratics on a Graphing Calculator - (Video) Graphs a quadratic function using a graphing calculator; click link and enter the quick code LZ2415.

Math 2H UNIT 2 OVERVIEW: Medeling-with Quadratic Functions Parent Guide

- Quadratic Transformations - (Video) Shows how to transform a quadratic function $\boldsymbol{f}(\boldsymbol{x})$ in vertex form when $\boldsymbol{f}(\boldsymbol{x})$ is replaced with $\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}, \boldsymbol{f}(\boldsymbol{x}+\boldsymbol{k})$ and $\boldsymbol{k} \cdot \boldsymbol{f}(\boldsymbol{x})$ for specific values of \boldsymbol{k} (both positive and negative)
- Function Transformations - (Reference Notes and Tutorial) Outlines the effects of on the graph of a quadratic function $\boldsymbol{f}(\boldsymbol{x})$ in vertex form when $\boldsymbol{f}(\boldsymbol{x})$ is replaced with $\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}, \boldsymbol{f}(\boldsymbol{x}+\boldsymbol{k})$ and $\boldsymbol{k} \cdot \boldsymbol{f}(\boldsymbol{x})$ for specific values of \boldsymbol{k} (both positive and negative).
- How do you Graph a Quadratic Function? (Video) - Graphing a quadratic function using key features.
- How do you Graph a Quadratic Function? (Reference Notes) Explains graphing a quadratic function using key features.
- Interpreting Function Notation in Context - (Reference Notes) Interprets function notation in the context of a cell phone with explanations.

\checkmark Teaching videos made by Wake County teachers

- Success Series: Polynomials Part 2 - (Video) Multiplying polynomials.
o Success Series: Quadratic Equations Solutions by Factoring - (Video) Using the factoring to solve quadratic equations.
○ Success Series: Quadratic Equations Solutions by Quadratic Formula - (Video) Using the quadratic formula to solve quadratic equations.
- Success Series: Graphing Quadratic Equations - (Video) How to graph a quadratic using the vertex and axis of symmetry.

Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement please feel free to contact sdupree@wcpss.net

