Math I UNIT 5 OVERVIEW: Quadratic Functions

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
\checkmark Use function notation to evaluate a quadratic function given a value in the domain. Interpret the contextual meaning of a given point from a quadratic function in function notation. Interpret the meaning of the independent and dependent variables in context of a quadratic function. Interpret contextual significance of the domain and range of a quadratic function State the domain and range of a quadratic function from its graph. \checkmark Interpret and analyze key features of a quadratic function in context including positive/negative, increasing/decreasing, intercepts, maximum/minimum and domain/range when given the function as a table, graph, and/or verbal description. Use mathematical reasoning to justify a chosen solution method for a quadratic equation. Use mathematical reasoning to justify each step of the solving process for a quadratic equation. Identify the terms, factors and coefficients of a quadratic expression. Interpret the terms, factors and coefficients of a quadratic expression in terms of the context. \checkmark Create an equation in two variables to represent a quadratic relationship between two quantities. \checkmark Graph a quadratic equation that represents a relationship between two quantities. \checkmark Choose an appropriate domain and range for a quadratic function. \checkmark Identify the maximum and minimum of quadratic functions \checkmark Identify where a quadratic function is increasing and decreasing. \checkmark Compare two quadratic functions symbolically, graphically, verbally, and using tables. Compare linear and quadratic functions symbolically, graphically, verbally, and using tables. \checkmark Build a quadratic function by multiplying linear equations and combining two quadratic equations with addition and subtraction.	\checkmark Acceleration due to Gravity \checkmark Axis of Symmetry \checkmark Binomial \checkmark Constant \checkmark Degree of a Monomial \checkmark Degree of a Polynomial \checkmark Difference of Squares \checkmark Extreme Values \checkmark Factoring \checkmark Initial Height \checkmark Initial Velocity \checkmark Greatest Common Factor \checkmark Intercepts \checkmark Intervals Where Increasing, Decreasing, Positive or Negative \checkmark Linear Expression \checkmark Monomial \checkmark Parabola \checkmark Polynomial \checkmark Relative Maximum or Minimum \checkmark Roots \checkmark Solutions \checkmark Standard Form of a Polynomial \checkmark Symmetry \checkmark Trinomial \checkmark Vertex \checkmark x-intercepts of a Quadratic Function \checkmark Zeros
Key Standards Addressed Connections to Common Core/NC Essential Standards	Where This Unit Fits Connections to prior and future learning

Math I UNIT 5 OVERVIEW: Quadratic Functions

NC.M1.A-SSE. 1 Interpret expressions that represent a quantity in terms of its context.
a. Identify and interpret parts of a linear, exponential, or quadratic expression, including terms, factors, coefficients, and exponents. b. Interpret a linear, exponential, or quadratic expression made of multiple parts as a combination of entities to give meaning to an expression.

NC.M1.A-SSE. 3 Write an equivalent form of a quadratic expression, $a x^{2}+b x+c$, where a is an integer, by factoring to reveal the solutions of the equation or the zeros of the function the expression defines.

NC.M1.A-APR. 1 Build an understanding that operations with polynomials are comparable to operations with integers by adding and subtracting quadratic expressions and by adding, subtracting, and multiplying linear expressions.

NC.M1.A-APR. 3 Understand the relationships among the factors of a quadratic expression, the solutions of a quadratic equation, and the zeros of a quadratic function.

NC.M1.A-CED. 2 Create and graph equations in two variables to represent linear, exponential, and quadratic relationships between quantities.

NC.M1.A-REI. 1 Justify a chosen solution method and each step of the solving process for linear and quadratic equations using mathematical reasoning.

NC.M1.A-REI. 4 Solve for the real solutions of quadratic equations in one variable by taking square roots and factoring.

NC.M1.A-REI. 11 Build an understanding of why the x coordinates of the points where the graphs of two linear, exponential, and/or quadratic equations $y=f(\mathrm{x})$ and $y=g(\mathrm{x})$ intersect are the solutions of the equation $f(\mathrm{x})=g(\mathrm{x})$ and approximate solutions using graphing technology or successive approximations with a table of values.

NC.M1.F-IF. 2 Use function notation to evaluate linear, quadratic, and exponential functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Coming into this unit, students should have a strong foundation in:
\checkmark Solving one variable equations
\checkmark Graphing linear functions
\checkmark Linear and exponential functions
\checkmark Finding the GCF of integers
\checkmark Combining like terms
\checkmark The Distributive Property
\checkmark Identifying key features of a function from a graph

This unit builds to the following future skills and concepts:
\checkmark Factoring quadratic equations with a leading coefficient other than one
\checkmark Graphing and analyzing more complex functions (including inverse, step, exponential, absolute value, trigonometric and logarithmic functions)

NC.M1.F-IF. 4 Interpret key features of graphs, tables, and verbal descriptions in context to describe functions that arise in applications relating two quantities, including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; and maximums and minimums.

NC.M1.F-IF. 5 Interpret a function in terms of the context by relating its domain and range to its graph and, where applicable, to the quantitative relationship it describes.

NC.M1.F-IF. 6 Calculate and interpret the average rate of change over a specified interval for a function presented numerically, graphically, and/or symbolically.

NC.M1.F-IF. 7 Analyze linear, exponential, and quadratic functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; rate of change; intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; and end behavior.

NC.M1.F-IF. 8 Use equivalent expressions to reveal and explain different properties of a function.
a. Rewrite a quadratic function to reveal and explain different key features of the function

NC.M1.F-IF. 9 Compare key features of two functions (linear, quadratic, or exponential) each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).

NC.M1.F.BF. 1 Write a function that describes a relationship between two quantities.
b. Build a function that models a relationship between two quantities by combining linear, exponential, or quadratic functions with addition and subtraction or two linear functions with multiplication.

NC.M1.F-LE. 3 Compare the end behavior of linear, exponential, and quadratic functions using graphs and tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.

Math I UNIT 5 OVERVIEW: Quadratic Functions

Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Quadratic equations overview (notes) \checkmark Quadratic equation solver \checkmark Factoring overview (video) \checkmark Graphing quadratic equations (video) \checkmark Factoring GCF (practice) \checkmark Factor quadratics when $\mathrm{a}=1$ (practice) \checkmark Factor quadratics with a leading coefficient (practice) \checkmark Factoring special cases (practice)	How can projectile motion be modeled using a quadratic function? How does knowing the definition of a maximum or minimum help you visualize the graph of a quadratic function? \checkmark How do you determine which solution to use for a quadratic equation? \checkmark How is factoring connected to the distributive property? How can I compare operations with integers to operations with quadratic expressions? \checkmark What types of information are contained in various forms of a quadratic function?

* Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

