Math I UNIT 4 OVERVIEW: Exponential Functions

Unit Outcomes At the end of this unit, your student should be able to:	Key Vocabulary Terms to deepen the student's understanding
$\checkmark \quad$ Classify exponential functions as growth or decay Compare/contrast properties and the graphs of linear and exponential functions Construct a graph of an exponential function from a table, sequence or a situation Model an exponential relationship between two quantities with tables, graphs, and equation Recognize that the solutions to an exponential equation are represented by the points on the graph Understand that a geometric sequence is a sequence of numbers where the ratio between consecutive numbers is constant \checkmark Understand that an exponential function has a r value greater than 1 if the function is growing $\checkmark \quad$ Identify the common ratio of the sequence $\checkmark \quad$ Write the first and subsequent terms of the sequence $\checkmark \quad$ Evaluate functions for given domains \checkmark Recognize a pattern will allow them to determine an arithmetic or geometric model $\checkmark \quad$ Translate between the recursive (NOW/NEXT) and explicit forms in modeling situations \checkmark Construct a table and graph of a linear function with slope m and exponential rate of change equal to the slope to identify the point where the exponential function exceeds the linear function \checkmark Determine the difference between the rate of change of a linear model (add each time) versus an exponential model (multiply each time)	\checkmark Base \checkmark Common Ratio \checkmark Constant \checkmark Explicit Form \checkmark Exponent \checkmark Exponential Decay \checkmark Exponential Equation \checkmark Exponential Form \checkmark Exponential Function \checkmark Exponential Growth \checkmark Function Notation \checkmark Geometric Sequence \checkmark Horizontal and Vertical Translation \checkmark Initial Term \checkmark Intercepts \checkmark Intervals Where Increasing, Decreasing, Positive or Negative \checkmark NOW-NEXT $\checkmark \quad$ Rate of Change \checkmark Relative Maximum \checkmark Relative Minimum
Key Standards Addressed Connections to Common Core/NC Essential Standards NC.M1.N-RN. 2 Rewrite algebraic expressions with integer exponents using the properties of exponents. NC.M1.A-SSE.1a Interpret expressions that represent a quantity in terms of its context. a. Identify and interpret parts of a linear, exponential, or quadratic expression, including terms, factors, coefficients, and exponents. NC.M1.A-SSE.1b Interpret a linear, exponential, or quadratic expression made of multiple parts as a combination of entities to give meaning to an expression. NC.M1.A-CED. 2 Create and graph equations in two variables to represent linear, exponential, and quadratic relationships between quantities. NC.M1.A-REI. 11 Build an understanding of why the x -coordinates of the points where the graphs of two linear, exponential, and/or quadratic equations $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ intersect are the solutions of the equation $\mathrm{f}(x)=g(x)$ and approximate solutions using graphing technology or successive approximations with a table of values. NC.M1.F-IF. 2 Use function notation to evaluate linear, quadratic, and exponential functions for inputs in their domains, and interpret statements that use function notation in terms of a context. NC.M1.F-IF. 3 Recognize that recursively and explicitly defined sequences are functions whose domain is a subset of the integers, the terms of an arithmetic sequence are a subset of the range of a linear function, and the terms of a geometric sequence are a subset of the range of an exponential function. NC.M1.F-IF. 4 Interpret key features of graphs, tables, and verbal descriptions in context to describe functions that arise in applications relating two quantities, including: intercepts; intervals where the function is increasing, decreasing, positive, or negative; and maximums and minimums.	Where This Unit Fits Connections to prior and future learning Coming into this unit, students should have a strong foundation in: $\checkmark \quad$ Solving one variable equations \checkmark Graphing linear functions $\checkmark \quad$ Identifying the initial value for a linear function $\checkmark \quad$ Writing recursive and explicit forms of an equation $\checkmark \quad$ Identifying key features of a function from a graph $\checkmark \quad$ Solving systems of equations and inequalities through graphing, substitution and elimination This unit builds to the following future skills and concepts: $\checkmark \quad$ Solving quadratic equations $\checkmark \quad$ Graphing and analyzing more complex functions (including inverse, step, exponential, absolute value, trigonometric and logarithmic functions) \checkmark Using regression models to predict linear, quadratic and exponential models

Math I UNIT 4 OVERVIEW: Exponential Functions

NC.M1.F-IF. 5 Interpret a function in terms of the context by relating its domain and range to its graph and, where applicable, to the quantitative relationship it describes.
NC.M1.F-IF. 6 Calculate and interpret the average rate of change over a specified interval for a function presented numerically, graphically, and/or symbolically.
NC.M1.F-IF. 7 Analyze linear, exponential, and quadratic functions by generating different representations, by hand in simple cases and using technology for more complicated cases, to show key features, including: domain and range; rate of change; intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; and end behavior.
NC.M1.F-IF.8b Use equivalent expressions to reveal and explain different properties of a function. \mathbf{b}). Interpret and explain growth and decay rates for an exponential function.
NC.M1.F-IF. 9 Compare key features of two functions (linear, quadratic, or exponential) each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).
NC.M1.F-BF.1a Write a function that describes a relationship between two quantities. a. Build linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two ordered pairs (include reading these from a table).
NC.M1.F-BF.1b Build a function that models a relationship between two quantities by combining linear, exponential, or quadratic functions with addition and subtraction or two linear functions with multiplication.
NC.M1.F-BF. 2 Translate between explicit and recursive forms of arithmetic and geometric sequences and use both to model situations.
NC.M1.F-LE. 1 Identify situations that can be modeled with linear and exponential functions, and justify the most appropriate model for a situation based on the rate of change over equal intervals.
NC.M1.F-LE. 3 Compare the end behavior of linear, exponential, and quadratic functions using graphs and tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.
NC.M1.F-LE. 5 Interpret the parameters a and b in a linear function $\mathrm{f}(x)=a x+b$ or an exponential function $g(x)=a b x$ in terms of a context.
NC.M1.S-ID. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
NC.M1.S-ID6c Fit a function to exponential data using technology. Use the fitted function to solve problems.

Math I UNIT 4 OVERVIEW: Exponential Functions

Additional Resources Materials to support understanding and enrichment	"Learning Checks" Questions Parents Can Use to Assess Understanding
\checkmark Exponential Growth and Decay \checkmark Modeling exponential growth and decay (video) \checkmark Graphing exponential functions (practice) \checkmark Evaluating exponential functions (practice) \checkmark Geometric sequences overview (video) $\checkmark \quad$ Write explicit form of geometric sequences (practice)	What considerations should be taken into account when determining the boundaries and scales of a graph? What are the key features of an exponential function? When given one of the four forms of information, what should be taken into consideration when determining the best function to model the situation? \checkmark How do you determine the best model for a data pattern? $\checkmark \quad$ Why is a multiplicative rate of change the key feature of an exponential function and how is it revealed in the different forms of this function (verbal, graph, table, equation)? When given a sequence, how do you identify whether it is arithmetic or geometric and how do you write a rule for the sequence?

[^0]
[^0]: * Please note, the unit guides are a work in progress. If you have feedback or suggestions on improvement, please feel free to contact wakemiddle@wcpss.net.

